Simulation of Bayesian Posterior Distributions of Parameters of Constrained Models

نویسنده

  • Ronald Schoenberg
چکیده

Constrained Maximum Likelihood (CML) is a new software module developed at Aptech Systems for the generation of maximum likelihood estimates of statistical models with general constraints on parameters. These constraints can be linear or nonlinear, equality or inequality. The software uses the Sequential Quadratic Programming method with various descent algorithms to iterate from a given starting point to the maximum likelihood estimates. Standard asymptotic theory asserts that statistical inference regarding inequality constrained parameters does not require special techniques because for a large enough sample there will always be a con dence region at the selected level of con dence that avoids the constraint boundaries. Su ciently large, however, can be quite large, in the millions of cases when the true parameter values are very close to these boundaries. In practice, our nite samples may not be large enough for con dence regions to avoid constraint boundaries, and this has implications for all parameters in models with inequality constraints, even for those that are not themselves constrained. The usual method for statistical inference, comprising the calculation of the covariance matrix of the parameters and constructing t-statistics from the standard errors of the parameters, fails in the context of inequality constrained parameters because con dence regions will not generally be symmetric about the estimates. When the con dence region impinges on the constraint boundary, it becomes truncated, possibly in a way that a ects the con dence limit. It is therefore necessary to compute con dence intervals rather than t-statistics. Previous work (R.J. Schoenberg, "Constrained Maximum Likelihood", Computational Economics, 1997) shows that con dence intervals computed by inversion of the likelihood ratio statistics (i.e., pro le likeihood con dence limits) fail when there are constrained nuisance parameters in the model. This paper describes the weighted likelihood bootstrap method of Newton and Raftery ("Approximate Bayesian inference with the weighted likelihood bootstrap", J.R. Statist. Soc. B, 56:3-48,1994). This method generates simulations of the Bayesian posterior of the parameters. Con dence limits produced from these simulations may be interpreted as Bayesian con dence limits.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Quantile Regression with Adaptive Lasso Penalty for Dynamic Panel Data

‎Dynamic panel data models include the important part of medicine‎, ‎social and economic studies‎. ‎Existence of the lagged dependent variable as an explanatory variable is a sensible trait of these models‎. ‎The estimation problem of these models arises from the correlation between the lagged depended variable and the current disturbance‎. ‎Recently‎, ‎quantile regression to analyze dynamic pa...

متن کامل

Bayesian Quantile Regression with Adaptive Elastic Net Penalty for Longitudinal Data

Longitudinal studies include the important parts of epidemiological surveys, clinical trials and social studies. In longitudinal studies, measurement of the responses is conducted repeatedly through time. Often, the main goal is to characterize the change in responses over time and the factors that influence the change. Recently, to analyze this kind of data, quantile regression has been taken ...

متن کامل

Comparison of Linear and Threshold Models for Estimation Genetic and Phenotypic Parameters of Success of Conception at First Service and Inseminations to Conception in Holstein Cattles in East Azarbayjan Province

In this research genetic and phenotypic parameters were estimated using linear and threshold models, for reproductive traits, data from 6 large industrial dairy herd of East Azerbaijan province collected by Agriculture Jihad Organization during 10 years (2001-2010). Best linear unbiased predictions of traits breeding values were estimated using Restricted Maximum Likelihood method by WOMBAT sof...

متن کامل

Comparison of Linear and Threshold Models for Estimation Genetic and Phenotypic Parameters of Success of Conception at First Service and Inseminations to Conception in Holstein Cattles in East Azarbayjan Province

In this research genetic and phenotypic parameters were estimated using linear and threshold models, for reproductive traits, data from 6 large industrial dairy herd of East Azerbaijan province collected by Agriculture Jihad Organization during 10 years (2001-2010). Best linear unbiased predictions of traits breeding values were estimated using Restricted Maximum Likelihood method by WOMBAT sof...

متن کامل

Improving the Performance of Bayesian Estimation Methods in Estimations of Shift Point and Comparison with MLE Approach

A Bayesian analysis is used to detect a change-point in a sequence of independent random variables from exponential distributions. In This paper, we try to estimate change point which occurs in any sequence of independent exponential observations. The Bayes estimators are derived for change point, the rate of exponential distribution before shift and the rate of exponential distribution after s...

متن کامل

Bayesian Estimation of Parameters in the Exponentiated Gumbel Distribution

Abstract: The Exponentiated Gumbel (EG) distribution has been proposed to capture some aspects of the data that the Gumbel distribution fails to specify. In this paper, we estimate the EG's parameters in the Bayesian framework. We consider a 2-level hierarchical structure for prior distribution. As the posterior distributions do not admit a closed form, we do an approximated inference by using ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997